Alexa, Siri, and Cortana—many of us have encountered this trio of virtual assistants in our day-to-day tasks. They can help in turning on the lights of our home, find information on the internet, and even start a video conference. What many don’t know is that these technologies are dependent on natural language processing.
These virtual assistants are applications of automatic speech recognition (ASR). Also known as computer speech recognition, ASR uses artificial intelligence and machine learning algorithms to analyze and convert human speech to text.
To ensure the maximum effectiveness of your ASR models, it is important to collect substantial speech & audio datasets. The goal of speech collection is to collect enough sample recordings to feed and train ASR models.
These speech datasets are used for future comparison against the speech of unknown speakers using unspecified speaker recognition methods. For ASR systems to work as intended, speech collection must be conducted for all target demographics, languages, dialects, and accents.
Artificial intelligence can only be as intelligent as the data it’s given. It is important to collect substantial speech or audio datasets to train an ASR model with maximum effectiveness. We’ve outlined the steps in speech data collection to effectively train your machine learning learning model:
Related: Human-in-the-Loop Machine Learning: How Humans Keep AI Models in Check
Other than virtual assistants, speech recognition systems are also being used across various industries:
Travel and Transportation
According to Automotive World1, 90% of new vehicles sold by 2028 will be voice-assisted. Applications like Apple CarPlay or Google Android Auto integrate voice data to activate navigation systems, send a message, or switch music playlists in a car’s entertainment system.
BMW partnered with Microsoft-acquired Nuance2 to power the BMW Intelligent Personal3 Assistant first available in the BMW 3 Series. The AI-powered digital companion enables drivers to operate their car and access information, such as the entire car manual, using only the driver’s voice.
Food
Fast food giants McDonald’s4 and Wendy’s5 are leveling up their customer experience with the use of automatic speech recognition. An AI platform transcribes the voice data and gives them to the cooks for preparation. The integration of speech recognition systems result in fast and frictionless interactions and lower labor cost.
Media and Entertainment
YouTube’s6 audio AI-based features expands to include live auto captions. This means that creators can now do live streams with captions automatically seen at the bottom of the screen. This ASR feature will soon be available in more languages to make streams more inclusive and accessible.
Telecommunication
Many telecom service providers such as Vodafone7 use ASR technology in telephone relay services and customer care centers to address customer queries or forward calls to concerned departments for a quick solution.
To understand natural language, algorithms need to be trained with large sets of written or spoken data that has been annotated based on parts of speech, meaning, and sentiment. At TaskUs, here’s what we bring to the conversation: over a decade of experience in collecting and enhancing text and speech data for machine learning.
We have an average score of 98% QA score in all data-related operations. We customize the build of our teams empowering them with best-in-class tooling to support a wide range of projects and workflows. We provide enterprise-level security options for sensitive data or compliance needs. With our global footprint, we can efficiently execute large-scale global programs catered specifically to your company’s data collection, annotation, and evaluation needs.
Our services for audio and speech data collection include:
A leading global social media and technology company has been a consistent game-changer in the social networking space and consumer tech products. In recent years, they started to develop a virtual assistant that could potentially create a better user experience for their consumers.
However, to accomplish such an ambitious project, they will face multiple challenges in audio data collection. Variances in local speech, audio quality, and fluctuation of daily queues are only some of the obstacles they have to navigate. More than ever, they need a reliable partner that can support their data labeling, tagging, and audio transcription efforts.
Download our case study on Audio Training Data for a Global Technology Company to learn the three-step framework we used to support the client’s audio training needs.
References
We exist to empower people to deliver Ridiculously Good innovation to the world’s best companies.
Services
Cookie | Duration | Description |
---|---|---|
__q_state_ | 1 Year | Qualified Chat. Necessary for the functionality of the website’s chat-box function. |
_GRECAPTCHA | 1 Day | www.google.com. reCAPTCHA cookie executed for the purpose of providing its risk analysis. |
6suuid | 2 Years | 6sense Insights |
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
NID, 1P_JAR, __Secure-3PAPISID,__Secure-3PSID,__ Secure-3PSIDCC | 30 Days | Cookies set by Google. Used to store a unique ID for various Google services such as Google Chrome, Autocomplete and more. Read more here: https://policies.google.com/technologies/cookies#types-of-cookies |
pll_language | 1 Year | Polylang, Used for storing language preferences on the website. |
ppwp_wp_session | 30 Minutes | This cookie is native to PHP applications. Used to store and identify a users’ unique session ID for the purpose of managing user session on the website. This is a session cookie and is deleted when all the browser windows are closed. |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
Cookie | Duration | Description |
---|---|---|
_ga | 2 Years | Google Analytics, Used to distinguish users. |
_gat_gtag_UA_5184324_2 | 1 Minute | Google Analytics, It compiles information about how visitors use the site. |
_gid | 1 Day | Google Analytics, Used to distinguish users. |
pardot | Until Cleared | Salesforce Pardot. Used to store and track if the browser tab is active. |
Cookie | Duration | Description |
---|---|---|
bcookie | 2 Years | Browser identifier cookie. Used to uniquely identify devices accessing LinkedIn to detect abuse on the platform. |
bito, bitolsSecure | 30 Days | Set by bidr.io. Beeswax’s advertisement cookie based on uniquely identifying your browser and internet device. If you do not allow this cookie, you will experience less relevant advertising from Beeswax. |
checkForPermission | 10 Minutes | bidr.io. Beeswax’s audience targeting cookie. |
lang | Session | Used to remember a user’s language setting to ensure LinkedIn.com displays in the language selected by the user in their settings. |
pxrc | 3 Months | rlcdn.com. Used to deliver advertising more relevant to the user and their interests. |
rlas3 | 1 Year | rlcdn.com. Used to deliver advertising more relevant to the user and their interests. |
tuuid | 2 Years | company-target.com. Used for analytics and targeted advertising. |